Артикул: 1008991

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 15.13 из сборника Кузнецова.
Найти объем тела, заданного неравенствами:

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 15.13 из сборника Кузнецова. <br /> Найти объем тела, заданного неравенствами:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить Г(5/2)
Вычислить двойной интеграл
Вычислить интеграл по верхней стороне верхней половины сферы x2 + y2 + z2 = R2
Доказать, что если I1 и I2, то I1I2 = π/4
Найти массу М дуги кривой x = t, y = t2/2, z = t3/3 (0 ≤ t ≤ 1), линейная плотность которой меняется по закону γ = √(2y)
Найти координаты центра тяжести дуги циклоиды
x = t - sin(t), y = 1 - cos(t) (0 ≤ t ≤ π)

Применяя формулу Стокса, найти интеграл, если С - окружность x2 + y2 = z2, z = 0
Найти момент инерции полусферы z = √(a2 - x2 - y2) относительно оси Oz
Применяя формулу Остроградского -Гаусса, преобразовать поверхностный интеграл по замкнутой поверхности S в интеграл по объему, ограниченному этой поверхностью
Найти объем тела, ограниченного поверхностями : S1: x2 + y2 = z2; S2: x2 + y2 + z2 = R2; S3: y = 0 (y ≥ 0)