Артикул: 1008988

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 14.4 из сборника Кузнецова.
Найти объем тела, заданного ограничивающими его поверхностями

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 14.4 из сборника Кузнецова. <br /> Найти объем тела, заданного ограничивающими его поверхностями

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить работу силы F = (x2 + y2 + 1)i + 2xyj вдоль дуги параболы y = x3, заключенной между точками A(0, 0) и B(1, 1).
Проверить формулу Грина для интеграла , где L-контур Δ АВС А(0;2), В(0;5), С(-6;5).
Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. V: 8y = x2 + z2, x2 + z2 = 16, y = 0
Перейдя к полярным координатам, вычислить двойной интеграл ∬√(4-x2-y2) dxdy D: x2+y2 ≤ -2x, y≥-x, y≥x
Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.
V: y = 3√(x2 + z2) , y = 6, Oy

Вычислить площадь части поверхности σЮ заключенную внутри цилиндрической поверхности Ц
σ:y2 = 2xz
Ц: 0 ≤ x ≤ 2, 0 ≤ z ≤ 2

Вычислить массу неоднородной пластины D, ограниченной заданными линиями, если поверхностная плотность в каждой ее точке μ= μ(x, y)
D: x = 0, y = 3x, x + y = 3, μ = 3 – x – y

Найти координаты центра масс однородного тела, ограниченного поверхностями:
y=3√(x2+z2), x2+z2=62 , y=0

Вычислить криволинейный интеграл по замкнутому контуру L (обход контура L против часовой стрелки) двумя способами: непосредственно и по формуле Грина
L: x2 + y2 = 4, P = y2 + x, Q = x2 + y

Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты
D: x2 + y2 – 2ax = 0, x – y ≤ 0, Oy