Артикул: 1008987

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 14.3 из сборника Кузнецова.
Найти объем тела, заданного ограничивающими его поверхностями

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 14.3 из сборника Кузнецова. <br /> Найти объем тела, заданного ограничивающими его поверхностями

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Вычислить криволинейные интегралы по координатам, где l-эллипс x = 3cos(t), y = 2sin(t) при положительном направлении обхода.
Вычислить данные криволинейные интегралы, где LAB: y = x2 от точки А(−1, 1) до точки B(1, 1).
С помощью тройного интеграла вычислить объем тела V, переходя к цилиндрическим или сферическим координатам.
x2 + y2 ≤ 1, z ≥ 0
x2 + y2 + z2 ≤ 9

Вычислить координаты центра масс однородного тела, занимающего область V, ограниченную указанными поверхностями. V: 8y = x2 + z2, x2 + z2 = 16, y = 0
Проверить формулу Грина для интеграла , где L-контур Δ АВС А(0;2), В(0;5), С(-6;5).
Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.
V: y = 3√(x2 + z2) , y = 6, Oy

Изменить порядок интегрирования в следующих интегралах
Перейдя к полярным координатам, вычислить двойной интеграл ∬√(4-x2-y2) dxdy D: x2+y2 ≤ -2x, y≥-x, y≥x
Вычислить двойной интеграл по области D 10x2 y+6y D: y4=-8x,y=2,x=0
Найти координаты центра масс однородного тела, ограниченного поверхностями:
y=3√(x2+z2), x2+z2=62 , y=0