Артикул: 1008984

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 14.1 из сборника Кузнецова.
Найти объем тела, заданного ограничивающими его поверхностями

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 14.1 из сборника Кузнецова. <br /> Найти объем тела, заданного ограничивающими его поверхностями

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Найти момент инерции полусферы z = √(a2 - x2 - y2) относительно оси Oz
Изменить порядок интегрирования
Вычислить
Вычислить двойной интеграл, если область Д ограничена линиями: y=x, y=2-x, y=0.
Вычислить объем тела ограниченного сферой x2 + y2 + z2 = 4a2 и цилиндром x2+y2=a2 и расположенного вне цилиндраВычислить координаты центра тяжести части плоскости z = x, ограниченной плоскостями x + y = 1, y = 0, x = 0
Применяя формулу Грина, вычислить интеграл, если С - контур треугольника с вершинами L(1;1), M(2;2), N(1;3), пробегаемый против хода часовой стрелки. Проверить результат непосредственным интегрированием
Найти момент инерции относительно оси ОХ однородного тела, ограниченного поверхностями S1: x = y2 + z2; S2: x = 1
Вычислить интеграл, где S - часть конической поверхности z2 = x2 + y2, заключенной между плоскостями z = 0, z = 1
Изменить порядок интегрирования