Артикул: 1008980

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Математический анализ (16203 шт.) >
  Кратные и криволинейные интегралы (1122 шт.)

Название:Задача 13.1 из сборника Кузнецова.
Найти объем тела, заданного ограничивающими его поверхностями

Поисковые тэги: Задачник Кузнецова

Изображение предварительного просмотра:

Задача 13.1 из сборника Кузнецова. <br /> Найти объем тела, заданного ограничивающими его поверхностями

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

С помощью тройного интеграла вычислить объем тела V, переходя к цилиндрическим или сферическим координатам.
x2 + y2 ≤ 1, z ≥ 0
x2 + y2 + z2 ≤ 9

Вычислить площадь части поверхности σЮ заключенную внутри цилиндрической поверхности Ц
σ:y2 = 2xz
Ц: 0 ≤ x ≤ 2, 0 ≤ z ≤ 2

Вычислить статический момент однородной пластины D, ограниченной данными линиями, относительно указанной оси, использовав полярные координаты
D: x2 + y2 – 2ax = 0, x – y ≤ 0, Oy

Изменить порядок интегрирования в интеграле. Область интегрирования изобразить на чертеже
Проверить формулу Грина для интеграла , где L-контур Δ АВС А(0;2), В(0;5), С(-6;5).
Перейдя к полярным координатам, вычислить двойной интеграл ∬√(4-x2-y2) dxdy D: x2+y2 ≤ -2x, y≥-x, y≥x
Вычислить работу силы F = (x2 + y2 + 1)i + 2xyj вдоль дуги параболы y = x3, заключенной между точками A(0, 0) и B(1, 1).
Вычислить момент инерции относительно указанной оси координат однородного тела, занимающего область V, ограниченную данными поверхностями. Плотность тела δ принять равной 1.
V: y = 3√(x2 + z2) , y = 6, Oy

Вычислить с помощью тройного интеграла объем области T, ограниченной указанными поверхностями x+y+z+3=0,x=0,y=0,z=0
Найти работу A по перемещению материальной точки вдоль кривой L под действием силы
F =P(x,y) i +Q(x,y)j, P=xy+x2+y, Q=xy+x2-y L:прямоугольник с вершинами A(0;-2),B(1;-2),C(1;3),D(0;3)