Артикул: 1004414

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Плоские балки (брусья) (220 шт.)

Название:Для консольной балки подобрать размеры прямоугольного (соотношение размеров h/b = 2) и круглого поперечного сечения, сравнить массы балок с разными формами поперечных сечений, проверить прочность по касательным напряжениям.
Исходные данные: F = 10 кН; М0 = 10 кНм; q = 10 кН/м; a = 1 м; [σ] = 160 МПа.

Изображение предварительного просмотра:

Для консольной балки подобрать размеры прямоугольного (соотношение размеров h/b = 2) и круглого поперечного сечения, сравнить массы балок с разными формами поперечных сечений, проверить прочность по касательным напряжениям.<br /> Исходные данные: F = 10 кН; М<sub>0</sub> = 10 кНм; q = 10 кН/м; a = 1 м; [σ] = 160 МПа.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задание 4. Расчет двухопорной балки на прочность
Для заданной стальной двухопорной балки см. рис. 4.1, определить реакции опор, построить эпюры поперечных сил и изгибающих моментов, и подобрать из условия прочности размеры поперечного сечения. Рассмотреть два варианта: а) поперечное сечение в виде прямоугольника, высота прямоугольника вдвое больше его ширины (h=2b); б) поперечное сечение в виде круга диаметром d. Сравнить варианты по расходу материала. В расчетах принять [σ] = 150 МПа.
Дано: F1=8 кН; F2=12 кН; М=10 кН∙м.

Расчет балки на изгиб
1. Изобразить расчетную схему балки с указанием численных значений нагрузки и линейных размеров
2. Найти реакции опор.
3. Разбить балку на участки
4. На каждом участке методом сечений определить поперечную силу Qy и изгибающий момент Mz
5. По эпюре изгибающего момента найти опасное сечение
6. Определить условие прочности при изгибе
7. По найденному значению осевого момента сопротивления найти размеры заданных поперечных сечений балки
8. По таблице подобрать номер двутавровой балки

Задача 4a Для балки требуется построить эпюры поперечных сил, изгибающих моментов, найти максимальный изгибающийм момент, подобрать балки прямоугольного и двутаврового сечения, выбрать наиболее рациональное сечение балки.
Дано: Р = 2 кН, σT = 800 МПа, nT = 2,5, сталь40Х, Е = 2·105 МПа, а = 1,4 м, b = 1,5 м, с = 0,7 м.
Найти:
1. Найти абсолютные удлинения стержней
2. Усилия в стрежнях
3. Подобрать площади поперечных сечений стержней
4. Определить допускаемую силу Р
5. Коэффициент запаса

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 4q
Построить эпюры Q и M

Дано: Р1 = 35 кН, Р2 = 80 кН, m1 = 10 кН·м, m2 = 12 кН·м, а = 2 м, [σ ] = 160 Мпа, [σ]с = 750 МПа, [σ]p = 200 МПа
1.Определить опорные реакции
2.Построить эпюры Q и Mz.

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 3q
Построить эпюры Q и M

Вычислить опорные реакции балки. Построить эпюры поперечных сил и изгибающих моментов. Подобрать круглое сечение для опасного сечения.
Дано: q = 10 кН/м, M0 = 5 кН·мб [σ] = 12 МПа

Задача №1 (Прочностной расчет балки)
Для изображенной на рисунке 3.4 стальной балки выполнить расчеты на прочность в соответствии с заданием контрольной работы.
Дано: q = 10,17 кН/м; М = 80 кН·м; F = 40 кН; l = 2 м; сечение 1 – прямоугольник (h = 2b); сечение 2 – квадрат со стороной а; [σ] = 160 МПа.
Определить: реакции внешних связей; внутренние поперечные силы и изгибающие моменты; размеры сечений и максимальные нормальные напряжения в них.

Балка постоянной жесткости EI закреплена с помощью трех шарнирных опор. Требуется:
1. Методом сил раскрыть статическую неопределимость системы, т.е. определить значения лишних неизвестных
2. Построить эпюры поперечных сил и изгибающих моментов
3. Сделать деформационную проверку решения