Артикул: 1004405

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Плоские балки (брусья) (220 шт.)

Название:Определить наибольшую величину груза G, который может быть безопасно подвешен к узлу В стержневой подвески. Стержни изготовлены из стали Ст 2, для которой допускаемое напряжение [σ] = 140 МПа. Диаметр стержней d = 2 см.

Изображение предварительного просмотра:

Определить наибольшую величину груза G, который может быть безопасно подвешен к узлу В  стержневой подвески. Стержни изготовлены из стали Ст 2, для которой допускаемое напряжение [σ] = 140 МПа. Диаметр стержней d = 2 см.

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача 8 Расчет арки (расчет опорных реакций, определение значений M, Q, N и построение эпюр)
Дано: l = 18 м, α = 0.30, f/l = 0.3, q1 = 0, q2 = 3 кН/м. Очертания оси - парабола. Схема №2

Деревянная балка (рис. 5) прямоугольного поперечного сечения с шириной в и высотой h нагружена направленной вниз силой Р1 в точке А и горизонтальной силой Р2 (направленной влево, если смотреть с левого торца балки) в точке В. Точка А и В расположены на оси балки. На опорах балки могут возникнуть как вертикальные, так и горизонтальные реакции, направленные перпендикулярно плоскости чертежа.
1) Построить эпюры изгибающих моментов в вертикальной Мверт и горизонтальной Мгор плоскостях, установить положение опасного сечения.
2) Подобрать размеры поперечного сечения в и h при допускаемом напряжении [σ] = 8 МПа
3) Определить положение нейтральной линии в опасном сечении балки и построить для этого сечения эпюру нормальных напряжений в аксонометрии.

Построить эпюры поперечных сил и изгибающих моментов для балки, изображенной на рисунке. Выбрать поперечное сечение балки в опасном сечении
Дано: Схема 10, l2=10 м; а2=10 м; а3=5 м; Р=9,81 кН; q=9,81 кН/м; М=5,89 кН·м; [σ]=156,96 МПа.
Для заданной схемы балки, шарнирно опертой на две опоры, требуется написать выражения Q и M для каждого участка в общем виде, построить эпюры Q и М, найти ММАХ и подобрать стальную балку двутаврового поперечного сечения при [σ]=1600 кгс/см2.

Для балки с тремя сосредоточенными массами и с поперечным сечением стержней в виде прокатного двутавра с заданным номером (рис. 1) требуется:
1. Определить сосредоточенные массы из условия, что каждая сосредоточенная масса в 10 раз больше массы участка балки, где находится эта масса.
2. Определить число степеней свободы пронумеровать перемещения, определяющие положения масс при колебаниях (сформировать вектор перемещений ).
3. Записать систему дифференциальных уравнений свободных колебаний системы для вектора .
4. Составить вековое уравнение для определения параметра собственных частот и форм колебаний.
5 . С помощью программы для электронной таблицы EXCEL вычислить собственные частоты колебаний и показать изогнутый вид балки, соответствующий каждой собственной форме. Проверить ортогональность полученных форм колебаний.

Задача 4a Для балки требуется построить эпюры поперечных сил, изгибающих моментов, найти максимальный изгибающийм момент, подобрать балки прямоугольного и двутаврового сечения, выбрать наиболее рациональное сечение балки.
Задача 1 Абсолютно жёсткий диск опирается на шарнирно неподвижную опору и прикреплен к двум стержням с помощью шарниров
Найти:
а) усилия и напряжения в стержнях, выразив их через силу Q;
б) найти величину допускаемой нагрузки, действующей на статически неопределимую систему;
в) найти предельную грузоподъемность системы и допускаемую нагрузку при заданном пределе текучести стали и коэффициенте запаса прочности;
г) сравнить предельную грузоподъемность, полученную из расчета по предельным состояниям с величиной, вычисленной по допускаемым нагрузкам;
д) определить перемещение точки приложения силы Q.

Расчет балки на изгиб
1. Изобразить расчетную схему балки с указанием численных значений нагрузки и линейных размеров
2. Найти реакции опор.
3. Разбить балку на участки
4. На каждом участке методом сечений определить поперечную силу Qy и изгибающий момент Mz
5. По эпюре изгибающего момента найти опасное сечение
6. Определить условие прочности при изгибе
7. По найденному значению осевого момента сопротивления найти размеры заданных поперечных сечений балки
8. По таблице подобрать номер двутавровой балки

Задача 4b
Дано: q = 10 кН/м; M0 = 5 кН·м, [σ] = 12 МПа
Построить эпюры поперечных сил и изгибающих моментов
Подобрать круглое сечение для опасного сечения

Построить эпюры поперечных сил и изгибающих моментов для балки, изображенной на рисунке. Данные для построения взять из таблицы №4.