Артикул: 1004294

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Плоские балки (брусья) (220 шт.)

Название:Подобрать сечение стержня (подвески), поддерживающего брус, как показано на рисунке. Материал – сталь марки С-235

Изображение предварительного просмотра:

Подобрать сечение стержня (подвески), поддерживающего брус, как показано на рисунке. Материал – сталь марки С-235

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Построить эпюры поперечных сил и изгибающих моментов для балки, изображенной на рисунке. Данные для построения взять из таблицы №4.
Абсолютно жесткий брус АВС, толщиной которого можно пренебречь, подвешен на трех стержнях (рис. 2). Все стержни стальные, (модуль упругости Е = 2·105 МПа) площадь поперечного сечения F одинакова.
Требуется:
1) Найти усилия и напряжения в стержнях;
2) Определить перемещение точки приложения силы Р;
3) Вычислить потенциальную энергию упругой деформации стержней и сравнить ее с работой внешней силы Р; при расхождении этих величин более, чем на 1%, следует уточнить расчет или найти ошибки.

Для балки с тремя сосредоточенными массами и с поперечным сечением стержней в виде прокатного двутавра с заданным номером (рис. 1) требуется:
1. Определить сосредоточенные массы из условия, что каждая сосредоточенная масса в 10 раз больше массы участка балки, где находится эта масса.
2. Определить число степеней свободы пронумеровать перемещения, определяющие положения масс при колебаниях (сформировать вектор перемещений ).
3. Записать систему дифференциальных уравнений свободных колебаний системы для вектора .
4. Составить вековое уравнение для определения параметра собственных частот и форм колебаний.
5 . С помощью программы для электронной таблицы EXCEL вычислить собственные частоты колебаний и показать изогнутый вид балки, соответствующий каждой собственной форме. Проверить ортогональность полученных форм колебаний.

Задача 1 Абсолютно жёсткий диск опирается на шарнирно неподвижную опору и прикреплен к двум стержням с помощью шарниров
Найти:
а) усилия и напряжения в стержнях, выразив их через силу Q;
б) найти величину допускаемой нагрузки, действующей на статически неопределимую систему;
в) найти предельную грузоподъемность системы и допускаемую нагрузку при заданном пределе текучести стали и коэффициенте запаса прочности;
г) сравнить предельную грузоподъемность, полученную из расчета по предельным состояниям с величиной, вычисленной по допускаемым нагрузкам;
д) определить перемещение точки приложения силы Q.

Для заданных двух схем балок (рис. 4) требуется:
1) Написать выражения Q и М для каждого участка в общем виде, построить эпюры Q и М, найти |Mmax| и подобрать: а) для схемы «а» деревянную балку прямоугольного сечения с заданным соотношением «К» высоты к ширине при [σ] = 8 МПа б) для схемы «б» - стальную балку двутаврового поперечного при [σ] = 160 МПа
2) Определить прогиб и угол поворота указанного на каждой схеме сечения «с», приняв значения модулей упругости для стали Е = 2·105 МПа и для древесины Е = 104 МПа

В заданной стержневой системе стальной стержень испытывает деформацию. Форма и размеры поперечного сечения стержня заданы. Принять: расчетное сопротивление Ry=200 МПа, модуль упругости Е=2·105 МПа
Требуется:
1. Определить геометрические характеристики поперечного сечения и гибкость сжатого стержня. Если гибкость стержня λ>160, то необходимо уменьшить его длину, приняв λ=160
2. Определить критическую продольную силу Nкр и критическое напряжение σкр в сжатом стержне. При гибкости стержня λ≥100 следует использовать формулу Эйлера, а при λ<100 – формулу Ясинского, приняв коэффициенты а=310 МПа, b=1,14 МПа
3. Из условия устойчивости определить допускаемую продольную силу Nдоп и допускаемое напряжение σдоп
4. Вычислить допускаемую нагрузку Рдоп для конструкции

Расчет балки на изгиб
1. Изобразить расчетную схему балки с указанием численных значений нагрузки и линейных размеров
2. Найти реакции опор.
3. Разбить балку на участки
4. На каждом участке методом сечений определить поперечную силу Qy и изгибающий момент Mz
5. По эпюре изгибающего момента найти опасное сечение
6. Определить условие прочности при изгибе
7. По найденному значению осевого момента сопротивления найти размеры заданных поперечных сечений балки
8. По таблице подобрать номер двутавровой балки

Дано: L = 2l, L1 = 3l, M = 5ql2, q1 = 4q, P1 = 2ql
Построить эпюры Q и M

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 3q
Построить эпюры Q и M

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 4q
Построить эпюры Q и M