Артикул: 1003691

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:Если часы показывают часы, минуты, секунды и AM-PM, то сколько различных моментов времени они могут показывать?

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Определите свойства отношений: R = {(x, y)| x, y ∈ R, x ≤ y}
Найти коэффициенты при a=x∙y3∙z4, b=x3∙y∙z2, c=x2∙y4 в разложении (5x+2y+3z2)6
На множестве M Бинарное отношение RÍ M´M Задано характеристическим свойством. Представить отношение R Другими возможными способами. Выяснить какими свойствами оно обладает.
Докажите тождество:
Преобразовать функцию в СДНФ и СКНФ
Преобразовать f(x1, x2, x3, x4) используя формулу дизъюнктивного разложения по совокупности переменных xn, xk , представляя получаемые функции от двух переменных формулами над множеством элементарных связок: отрицание, конъюнкция, дизъюнкция, импликация, сумма по модулю два, эквиваленция, запрет, штрих Шеффера, стрелка Пирса.
Машина Тьюринга (курсовая работа)
Целью данной работы является изучение и создание - „Машины Тьюринга”, которая решает задачу “Возведение в степень в унарной системе счисления”.
1. Для заданной функции найти полином Жегалкина. Решение представить двумя способами.
2. Найти СНДФ.
3. Найти СНКФ.

Описать элементы множества M, которое задано такой порождающей процедурой:
1. 3 ∈ M ; 2. Если элемент x∈M , то 3x∈M .
3. Множество M – является подмножеством любого множества A , удовлетворяющего условиям №1 и №2.
Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.