Артикул: 1003686

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:Упростите выражение:

Изображение предварительного просмотра:

Упростите выражение:

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Преобразовать f(x1, x2, x3, x4) используя формулу дизъюнктивного разложения по совокупности переменных xn, xk , представляя получаемые функции от двух переменных формулами над множеством элементарных связок: отрицание, конъюнкция, дизъюнкция, импликация, сумма по модулю два, эквиваленция, запрет, штрих Шеффера, стрелка Пирса.
Для отношения, заданного матрицей, определить является ли оно отношением эквивалентности

Является ли второе суждение логическим следствием первого:
А: Если существительное является в предложении подлежащим, то оно стоит в именительном падеже.
В: Если существительное не является в предложении подлежащим, то оно не стоит в именительном падеже.
Даны множества A и B. Изобразить и записать с указанием характеристического свойства результат каждой операции:
Всегда ли формулы [∀y[Ǝz[F]]] и [Ǝz[∀y[F]]] значат одно и то же? Решить, используя фразу естественного языка "y умнее z".
Минимизировать с помощью карт Карно двоичную функцию от 4-х переменных, заданную своими значениями на наборах
Из предложенного списка выберите те утверждения, которые являются верными. Ответ аргументируйте.
1 Выяснить вопрос о равносильности ДНФ f1, f2, f3 сведением их к СДНФ.
2 Преобразовать с помощью законов дистрибутивности f2 в КНФ, упростить полученное выражение.

Определите свойства отношений: R = {(x, y)| x, y ∈ R, x ≤ y}
Записать множество A = {x|x ∈ Z∧x2 < 10} перечислением элементов.