Артикул: 1003682

Раздел:Технические дисциплины (57837 шт.) >
  Математика (23376 шт.) >
  Дискретная математика (330 шт.)

Название:Пусть

Изображение предварительного просмотра:

Пусть

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Для отношения, заданного матрицей, определить является ли оно отношением эквивалентности

Для заданных функций f(x,y,x,), g(x,y,z,w) и h(x,y,z,w,t):
- запишите их представление в алгебраической форме;
- с помощью карт Карно найдите их минимальные ДНФ и КНФ;

Определите свойства отношений: R = {(x, y)| x, y ∈ R, x ≤ y}
Можно ли из функции f(x,y,z) с помощью суперпозиций получить g(x,y,z)?
Докажите тождество:
1. Для функций f(x,y,z) и g(x,y,z) выяснить вопрос об их принадлежности к классам T0, T1, L, S, M.
2. В случае, если некоторая функция представляет из себя функционально полный класс, выразить из неё с помощью суперпозиций константы 0,1, отрицание и конъюнкцию xy.
3. В случае, если некоторая функция представляет из себя функционально полный в слабом смысле класс, выразить из неё с помощью суперпозиций и фиксирования переменных отрицание и конъюнкцию ху.
4. Полученные результаты проверить с помощью построения таблиц.

Напишите СДНФ булевой функции, заданной следующей таблицей истинности, а затем упростите получившуюся ДНФ (используя логические эквивалентности)
Минимизировать с помощью карт Карно двоичную функцию от 4-х переменных, заданную своими значениями на наборах
Найти коэффициенты при a=x∙y3∙z4, b=x3∙y∙z2, c=x2∙y4 в разложении (5x+2y+3z2)6
Доопределить функции f(x,y,z), g(x,y,z), h(x,y,z) так, чтобы f ∈ M, g ∈ L, h ∈ S. Если построение какой-либо функции невозможно, докажите это. Выясните вопрос о принадлежности построенных функций к классам T0 и T1.