Артикул: 1003133

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Плоские балки (брусья) (220 шт.)

Название:Полный расчет на прочность и жесткость балки на двух опорах

Описание:
1. Определение опорных реакций.
2. Вычисление значений поперечных сил и изгибающих моментов, построение эпюр.
3. Подбор сечения по условию прочности.
4. По методу начальных параметров определить угол поворота в заданном сечении

Изображение предварительного просмотра:

Полный расчет на прочность и жесткость балки на двух опорах

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

На стальную балку действует система нагрузок, ориентированных следующим образом:
• Распределенная нагрузка q действует в вертикальной плоскости;
• Сосредоточенные сила Р и момент m приложены в плоскости, наклоненной под углом φ к вертикальной оси
Требуется:
1. Построить эпюры изгибающих моментов Mz и Мy от нагрузок, действующих в вертикальной и горизонтальной главных плоскостях балки
2. Изобразить в масштабе сечение балки и определить моменты инерции сечения относительно главных центральных осей
3. Определить положение нулевой линии в опасном сечении и построить эпюру нормальных напряжений
4. Из условия прочности подобрать сечение из прокатного двутавра, приняв расчетное сопротивление стали Ry=210 МПа

Задача 4б Для балки требуется найти реакции опор, построить эпюры поперечных сил, изгибающих моментов, найти максимальный изгибающий момент, подобрать балку круглого сечения, построить эпюру прогибов.
Задача 4b
Дано: q = 10 кН/м; M0 = 5 кН·м, [σ] = 12 МПа
Построить эпюры поперечных сил и изгибающих моментов
Подобрать круглое сечение для опасного сечения

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 4q
Построить эпюры Q и M

Задание 4. Расчет двухопорной балки на прочность
Для заданной стальной двухопорной балки см. рис. 4.1, определить реакции опор, построить эпюры поперечных сил и изгибающих моментов, и подобрать из условия прочности размеры поперечного сечения. Рассмотреть два варианта: а) поперечное сечение в виде прямоугольника, высота прямоугольника вдвое больше его ширины (h=2b); б) поперечное сечение в виде круга диаметром d. Сравнить варианты по расходу материала. В расчетах принять [σ] = 150 МПа.
Дано: F1=8 кН; F2=12 кН; М=10 кН∙м.

Дано: Схема 10, l2=10 м; а2=10 м; а3=5 м; Р=9,81 кН; q=9,81 кН/м; М=5,89 кН·м; [σ]=156,96 МПа.
Для заданной схемы балки, шарнирно опертой на две опоры, требуется написать выражения Q и M для каждого участка в общем виде, построить эпюры Q и М, найти ММАХ и подобрать стальную балку двутаврового поперечного сечения при [σ]=1600 кгс/см2.

Построить эпюры поперечных сил и изгибающих моментов для балки, изображенной на рисунке. Данные для построения взять из таблицы №4.
Балка на двух шарнирных опорах нагружена распределенной нагрузкой, сосредоточенной силой и моментом.
Требуется:
1. Построить эпюры поперечных сил Q и изгибающих моментов M.
. Из условия прочности подобрать номер двутавра, принимая расчетное сопротивление стали Ry=210 МПа.
3. Методом начальных параметров определить перемещение сечения В и угол поворота сечения А. Модуль упругости стали Е=2·105 МПа.

Дано: Р1 = 35 кН, Р2 = 80 кН, m1 = 10 кН·м, m2 = 12 кН·м, а = 2 м, [σ ] = 160 Мпа, [σ]с = 750 МПа, [σ]p = 200 МПа
1.Определить опорные реакции
2.Построить эпюры Q и Mz.
3. Подобрать сечение

Абсолютно жесткий брус АВС, толщиной которого можно пренебречь, подвешен на трех стержнях (рис. 2). Все стержни стальные, (модуль упругости Е = 2·105 МПа) площадь поперечного сечения F одинакова.
Требуется:
1) Найти усилия и напряжения в стержнях;
2) Определить перемещение точки приложения силы Р;
3) Вычислить потенциальную энергию упругой деформации стержней и сравнить ее с работой внешней силы Р; при расхождении этих величин более, чем на 1%, следует уточнить расчет или найти ошибки.