Артикул: 1002354

Раздел:Технические дисциплины (57837 шт.) >
  Сопротивление материалов (сопромат) (470 шт.) >
  Плоские балки (брусья) (220 шт.)

Название:Для балки, изображенной на рисунке:
1) построить эпюры поперечных сил Qy и изгибающих моментов Mx, найти Mxmax
2) подобрать прямоугольное (h : b = 2), кольцевое (Dвнут : Dвнеш = 0.8) и двутавровое поперечное сечение при [σ] = 160 МПа
3) выбрать наиболее рациональное сечение по расходу материала

Описание:
Дано: l1 =10a =1,2м, a = 0,12 м, 1 a = 3a = 0,36м, 2 a = 8a = 0,96м, M = 3 кН·м, F = 20 кН, q = 3 кН/м, h : в = 2 , Dвнутр : Dвнеш = 0,8 , [σ] =160 МПа.

Изображение предварительного просмотра:

Для балки, изображенной на рисунке: <br />1) построить эпюры поперечных сил Qy и изгибающих моментов Mx, найти Mxmax <br />2) подобрать прямоугольное (h : b = 2), кольцевое (Dвнут : Dвнеш = 0.8) и двутавровое поперечное сечение при [σ] = 160 МПа<br /> 3) выбрать наиболее рациональное сечение по расходу материала

Процесс покупки очень прост и состоит всего из пары действий:
1. После нажатия кнопки «Купить» вы перейдете на сайт платежной системы, где можете выбрать наиболее удобный для вас способ оплаты (банковские карты, электронные деньги, с баланса мобильного телефона, через банкоматы, терминалы, в салонах сотовой связи и множество других способов)
2. После успешной оплаты нажмите ссылку «Вернуться в магазин» и вы снова окажетесь на странице описания задачи, где вместо зеленой кнопки «Купить» будет синяя кнопка «Скачать»
3. Если вы оплатили, но по каким-то причинам не смогли скачать заказ (например, случайно закрылось окно), то просто сообщите нам на почту или в чате артикул задачи, способ и время оплаты и мы отправим вам файл.

Похожие задания:

Задача 8 Расчет арки (расчет опорных реакций, определение значений M, Q, N и построение эпюр)
Дано: l = 18 м, α = 0.30, f/l = 0.3, q1 = 0, q2 = 3 кН/м. Очертания оси - парабола. Схема №2

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 3q
Построить эпюры Q и M

Задание 4. Расчет двухопорной балки на прочность
Для заданной стальной двухопорной балки см. рис. 4.1, определить реакции опор, построить эпюры поперечных сил и изгибающих моментов, и подобрать из условия прочности размеры поперечного сечения. Рассмотреть два варианта: а) поперечное сечение в виде прямоугольника, высота прямоугольника вдвое больше его ширины (h=2b); б) поперечное сечение в виде круга диаметром d. Сравнить варианты по расходу материала. В расчетах принять [σ] = 150 МПа.
Дано: F1=8 кН; F2=12 кН; М=10 кН∙м.

Для балки с тремя сосредоточенными массами и с поперечным сечением стержней в виде прокатного двутавра с заданным номером (рис. 1) требуется:
1. Определить сосредоточенные массы из условия, что каждая сосредоточенная масса в 10 раз больше массы участка балки, где находится эта масса.
2. Определить число степеней свободы пронумеровать перемещения, определяющие положения масс при колебаниях (сформировать вектор перемещений ).
3. Записать систему дифференциальных уравнений свободных колебаний системы для вектора .
4. Составить вековое уравнение для определения параметра собственных частот и форм колебаний.
5 . С помощью программы для электронной таблицы EXCEL вычислить собственные частоты колебаний и показать изогнутый вид балки, соответствующий каждой собственной форме. Проверить ортогональность полученных форм колебаний.

Дано: Р1 = 35 кН, Р2 = 80 кН, m1 = 10 кН·м, m2 = 12 кН·м, а = 2 м, [σ ] = 160 Мпа, [σ]с = 750 МПа, [σ]p = 200 МПа
1.Определить опорные реакции
2.Построить эпюры Q и Mz.

Расчет балки на изгиб
1. Изобразить расчетную схему балки с указанием численных значений нагрузки и линейных размеров
2. Найти реакции опор.
3. Разбить балку на участки
4. На каждом участке методом сечений определить поперечную силу Qy и изгибающий момент Mz
5. По эпюре изгибающего момента найти опасное сечение
6. Определить условие прочности при изгибе
7. По найденному значению осевого момента сопротивления найти размеры заданных поперечных сечений балки
8. По таблице подобрать номер двутавровой балки

Балка на двух шарнирных опорах нагружена распределенной нагрузкой, сосредоточенной силой и моментом.
Требуется:
1. Построить эпюры поперечных сил Q и изгибающих моментов M.
. Из условия прочности подобрать номер двутавра, принимая расчетное сопротивление стали Ry=210 МПа.
3. Методом начальных параметров определить перемещение сечения В и угол поворота сечения А. Модуль упругости стали Е=2·105 МПа.

В заданной стержневой системе стальной стержень испытывает деформацию. Форма и размеры поперечного сечения стержня заданы. Принять: расчетное сопротивление Ry=200 МПа, модуль упругости Е=2·105 МПа
Требуется:
1. Определить геометрические характеристики поперечного сечения и гибкость сжатого стержня. Если гибкость стержня λ>160, то необходимо уменьшить его длину, приняв λ=160
2. Определить критическую продольную силу Nкр и критическое напряжение σкр в сжатом стержне. При гибкости стержня λ≥100 следует использовать формулу Эйлера, а при λ<100 – формулу Ясинского, приняв коэффициенты а=310 МПа, b=1,14 МПа
3. Из условия устойчивости определить допускаемую продольную силу Nдоп и допускаемое напряжение σдоп
4. Вычислить допускаемую нагрузку Рдоп для конструкции

Дано: L = 2l, L1 = 3l, M = 5ql, q2 = 4q
Построить эпюры Q и M

Для заданных двух схем балок (рис. 4) требуется:
1) Написать выражения Q и М для каждого участка в общем виде, построить эпюры Q и М, найти |Mmax| и подобрать: а) для схемы «а» деревянную балку прямоугольного сечения с заданным соотношением «К» высоты к ширине при [σ] = 8 МПа б) для схемы «б» - стальную балку двутаврового поперечного при [σ] = 160 МПа
2) Определить прогиб и угол поворота указанного на каждой схеме сечения «с», приняв значения модулей упругости для стали Е = 2·105 МПа и для древесины Е = 104 МПа