Артикул №1106572
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 16.08.2018)
Используя исходные данные (табл.2) определить, в какой момент времени ток через обмотку электромагнита с параметрами L и R, включаемую на синусоидальное напряжение Umsin(314t+Ψ), достигает максимального значения. Найти при этом его амплитуду и построить кривую этого переходного тока.
Используя исходные данные (табл.2) определить, в какой момент времени ток через обмотку электромагнита с параметрами L и R, включаемую на синусоидальное напряжение Umsin(314t+Ψ), достигает максимального значения. Найти при  этом его амплитуду и построить кривую этого переходного тока.
Поисковые тэги: Классический метод

Артикул №1106127
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 14.08.2018)
Рассчитать переходный процесс в электрической цепи (рис. 1.6) при включении в неё источника напряжения e(t) (рис. 1.7) Определить ёмкость (индуктивность) цепи, а также ток и напряжения на элементах цепи. Построить график зависимости тока, протекающего через источник и напряжений на элементах цепи во времени.
Вариант n = 4 m = 9

Рассчитать переходный процесс в электрической цепи (рис. 1.6) при включении в неё источника напряжения e(t) (рис. 1.7) Определить ёмкость (индуктивность) цепи, а также ток и напряжения на элементах цепи. Построить график зависимости тока, протекающего через источник и напряжений на элементах цепи во времени.<br /> Вариант n = 4 m = 9


Артикул №1105194
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 06.08.2018)
Моделирование переходный процессов в LTSpice
Моделируется 8 схем при подаче периодического импульса
В комплекте - скриншоты моделирования и файлы-исходники

Моделирование переходный процессов в LTSpice<br />Моделируется 8 схем при подаче периодического импульса<br /> В комплекте - скриншоты моделирования и файлы-исходники
Поисковые тэги: Spice (LTSpice)

Артикул №1102961
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  второго рода

(Добавлено: 19.07.2018)
Задание №3
1. Для приведенной на чертеже принципиальной электрической схемы анализируемой цепи составить операторное представление выходного напряжения.
2. Используя обратное преобразование Лапласа перейти к описанию выходного напряжения во временной области.
3. Построить временные диаграммы переходного процесса, используя полученные формулы для него.
4. Получить временные диаграммы для переходного процесса на выходе схемы с помощью пакета “Multisim”.
5. Сравнить полученные результаты между собой и сделать заключение о характере поведения анализируемой схемы.
Вариант 15
Uвхm=1 В; F = 15 кГц; R1 = 0.02 кОм; R2 = 30 кОм; С1 = 1 нФ; L1 = 100 мГн.
Начальные условия: UC = 10 B.

<b>Задание №3</b><br /> 1.  Для приведенной на чертеже принципиальной электрической схемы анализируемой цепи составить операторное представление выходного напряжения.  <br />2. Используя обратное преобразование Лапласа перейти к описанию выходного напряжения во временной области. <br />3. Построить временные диаграммы переходного процесса, используя полученные формулы для него. <br />4. Получить временные диаграммы для переходного процесса на выходе схемы с помощью пакета “Multisim”. <br />5. Сравнить полученные результаты между собой и сделать заключение о характере поведения анализируемой схемы.     <br />Вариант 15<br />Uвхm=1 В; F = 15 кГц; R1 = 0.02 кОм; R2 = 30 кОм; С1 = 1 нФ; L1 = 100 мГн. <br />Начальные условия:   UC = 10 B.
Поисковые тэги: Операторный метод, Multisim

Артикул №1101657
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 12.07.2018)
Переходные процессы в RL- и RC-цепях
В цепи переходной процесс, показанный на рисунке 1. L=11 мГн, C=36 нФ, R1=14 кОм, R2=32 кОм, R3=13 кОм, tи=0,7τ с, где τ – постоянная времени цепи.
Определить U2(t) классическим и операционным методами. Построить временную зависимость U2(t).

<b>Переходные процессы в RL- и RC-цепях </b> <br /> В цепи переходной процесс, показанный на рисунке 1. L=11 мГн, C=36 нФ, R1=14 кОм, R2=32 кОм, R3=13 кОм, tи=0,7τ с, где τ – постоянная времени цепи.  <br />Определить U2(t)  классическим и операционным методами. Построить временную зависимость U2(t).
Поисковые тэги: Операторный метод, Классический метод

Артикул №1101575
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 11.07.2018)
Исследование переходного процесса в цепи синусоидального тока
Используя исходные данные (табл.2) определить, в какой момент времени ток через обмотку электромагнита с параметрами L и R, включаемую на синусоидальное напряжение Umsin(314t+Ψ), достигает максимального значения. Найти при этом его амплитуду и построить кривую этого переходного тока.
Вариант 16а

Исследование переходного процесса в цепи  синусоидального тока<br />Используя исходные данные (табл.2) определить, в какой момент времени ток через обмотку электромагнита с параметрами L и R, включаемую на синусоидальное напряжение Umsin(314t+Ψ), достигает максимального значения. Найти при  этом его амплитуду и построить кривую этого переходного тока.<br /> Вариант 16а
Поисковые тэги: Классический метод

Артикул №1100891
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 06.07.2018)
Операторным методом определить выходные напряжение в цепи с параметрами R1 = R2 = 1 кОм, L = 1 мГн, если в момент t = 0 на вход наступает U1 = 20exp -106t В
Операторным методом определить выходные напряжение в цепи с параметрами R<sub>1</sub> = R<sub>2</sub> = 1 кОм,  L = 1 мГн, если в момент t  = 0 на вход наступает U<sub>1</sub> = 20exp<sup> -10<sup>6</sup>t</sup> В
Поисковые тэги: Операторный метод

Артикул №1100657
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  второго рода

(Добавлено: 05.07.2018)
Расчет переходного процесса и определение искомой величины при закорачивании сопротивления в линейной цепи переменного тока классическим методом, частота тока в сети f =3000 Гц.
Исходные данные к работе: Вариант 22 (М.У.)

Расчет переходного процесса и определение искомой величины при закорачивании сопротивления   в линейной цепи переменного тока классическим методом, частота   тока в сети  f =3000  Гц.  <br />Исходные данные к работе:  Вариант 22 (М.У.)
Поисковые тэги: Классический метод

Артикул №1100409
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 03.07.2018)
Расчёт переходных процессов с использованием интеграла Дюамеля (вариант 20)
Расчёт переходных процессов с использованием интеграла Дюамеля (вариант 20)
Поисковые тэги: Интеграл Дюамеля

Артикул №1100385
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 03.07.2018)
Расчет переходных процессов в цепи RL с синусоидальным током.
В соответствии с номером по журналу из приложения 3 выбираем схему. Исходные данные и вид коммутации смотрим в таблице 3. В исходной схеме заменить С на R , источник ЭДС становиться синусоидальным e(t)=E√2sin⁡(ωt+φ) . Определить ток в ветви ЭДС и построить график.
Вариант 3

Расчет переходных процессов в цепи RL с синусоидальным током. <br />В соответствии с номером по журналу из приложения 3 выбираем схему. Исходные данные и вид коммутации смотрим в таблице 3. В исходной схеме заменить С на R , источник ЭДС становиться синусоидальным e(t)=E√2sin⁡(ωt+φ) . Определить ток в ветви ЭДС и построить график.<br /> Вариант 3
Поисковые тэги: Классический метод

Артикул №1088170
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 02.04.2018)
Составить дифференциальные уравнения и решить их
Составить дифференциальные уравнения и решить их
Поисковые тэги: Классический метод

Артикул №1087759
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 30.03.2018)
На входе электрической схемы действует напряжение, изменяющееся по заданному закону. В соответствии с номером варианта необходимо с помощью интеграла Дюамеля найти закон изменения по времени тока в одной из ветвей схемы или напряжения на заданном участке схемы.
Необходимо записать аналитическое выражение искомой величины для всех интервалов времени. При этом в зависимости от формы входного напряжения решение будет содержать два или три соотношения, каждое из которых справедливо для соответствующего временного интервала.
По найденному аналитическому выражению нужно рассчитать и построить временную диаграмму в интервале 0 ÷ 2t1 или 0 ÷ 2t2 (в зависимости от сигнала). Значения t1 и t2 студент должен выбрать самостоятельно и согласовать с преподавателем.
Дано
Схема: рис.4
Сигнал: рис.9
A=23 В;
R1=23 Ом; R2=27 Ом; R3=36 Ом; R4=10 Ом; R5=36 Ом; C1=13 мкФ; L1=28 мГн;
Найти UR2(t)-?

На входе электрической схемы действует напряжение, изменяющееся по заданному закону. В соответствии с номером варианта необходимо с помощью интеграла Дюамеля найти закон изменения по времени тока в одной из ветвей схемы или напряжения на заданном участке схемы. <br />Необходимо записать аналитическое выражение искомой величины для всех интервалов времени. При этом в зависимости от формы входного напряжения решение будет содержать два или три соотношения, каждое из которых справедливо для  соответствующего временного интервала. <br />По найденному аналитическому выражению нужно рассчитать и построить временную диаграмму в интервале 0 ÷ 2t1 или 0 ÷ 2t2 (в зависимости от сигнала). Значения t1 и t2 студент должен выбрать самостоятельно и согласовать с преподавателем. <br /><b>Дано </b><br />Схема: рис.4 <br />Сигнал: рис.9 <br />A=23 В; <br />R1=23 Ом; R2=27 Ом; R3=36 Ом; R4=10 Ом; R5=36 Ом; C1=13 мкФ; L1=28 мГн; <br />Найти U<sub>R2</sub>(t)-?
Поисковые тэги: Интеграл Дюамеля, MicroCap

Артикул №1086385
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 21.03.2018)
С помощью интеграла Дюамеля определить закон изменения UC при R1 = R2 = 2 кОм, J1 = 1,5 А, J2 = 2 А, t1 = 1 мс
С помощью интеграла Дюамеля определить закон изменения UC при R1 = R2 = 2 кОм, J1 = 1,5 А, J2 = 2 А, t1 = 1 мс
Поисковые тэги: Интеграл Дюамеля

Артикул №1085461
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 14.03.2018)
Расчет переходных процессов с использованием интеграла Дюамеля
Дано: A1=16 B; C=40∙10-6 Ф; R1=23 Ом; R2=35 Ом; R3=21 Ом; R4=36 Ом; R5=59 Ом
Найти: IR3 (t)

Расчет переходных процессов с использованием интеграла Дюамеля <br />Дано: A1=16 B; C=40∙10<sup>-6 </sup> Ф; R1=23 Ом; R2=35 Ом; R3=21 Ом; R4=36 Ом; R5=59 Ом <br />Найти: I<sub>R3</sub> (t)
Поисковые тэги: Интеграл Дюамеля, MicroCap

Артикул №1074457
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  второго рода

(Добавлено: 03.01.2018)
Переходные процессы в несинусоидальных цепях. (курсовая работа)
1 Расчет переходного процесса в цепи при постоянном воздействии.
2 Расчет переходного процесса в цепи при гармоническом воздействии.
3 Расчет переходного процесса в цепи при несинусоидальном воздействии.
4 Анализ зависимости типа переходного процесса в цепи от одного линейного параметра.

Переходные процессы в несинусоидальных цепях. (курсовая работа)<br />  1 Расчет переходного процесса в цепи при постоянном воздействии.    <br />2  Расчет переходного процесса в цепи при гармоническом воздействии.  <br />3	Расчет переходного процесса в цепи при несинусоидальном воздействии.  <br />4	Анализ зависимости типа переходного процесса в цепи от одного линейного параметра.
Поисковые тэги: Операторный метод, Классический метод

Артикул №1060267
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  решение переходных процессов интегралом Дюамеля

(Добавлено: 16.09.2017)
Задание 1
Определить закон изменения тока i1(t) в цепи рис. 1.2 после размыкания ключа «Кл» классическим методом. В цепи колебательный переходный процесс, который обеспечивается величиной ёмкости C1 = C1к = 0.61 мкФ.
Задание 2
Необходимо определить закон изменения тока i6(t) в цепи рис. 1.1 после размыкания ключа Кл операторным методом. В цепи апериодический переходный процесс, который обеспечивается величиной ёмкости C1 = C1а = 2.02 мкФ.
Задание 3
В соответствии пунктом 3 карточки задания (рис. 1.1) расчётная схема задания формируется из исходной схемы рис. 1.2 путём исключения ёмкости C1 и заменой постоянной э.д.с. – Е6 = 70000 В на синусоидальную – e6(t) = 70000 sin (900t) В.
Остальные исходные данные сохраняют свои значения.
В задании требуется рассчитать закон изменения напряжения uL2(t) после замыкания ключа Кл.
Задание 4(см. подробное описание)

<b>Задание 1</b> <br />Определить закон изменения тока i1(t) в цепи рис. 1.2 после размыкания ключа «Кл» классическим методом. В цепи колебательный переходный процесс, который обеспечивается величиной ёмкости C1 = C1к =  0.61 мкФ.<br /><b>Задание 2</b> <br />Необходимо определить закон изменения тока i6(t) в цепи рис. 1.1 после размыкания ключа Кл операторным методом.  В цепи апериодический переходный процесс, который обеспечивается величиной ёмкости C1 = C1а = 2.02 мкФ.<br /><b>Задание 3</b><br />В соответствии пунктом 3 карточки задания (рис. 1.1) расчётная схема задания формируется из исходной схемы рис. 1.2 путём исключения ёмкости C1 и заменой постоянной э.д.с. – Е6  = 70000 В на синусоидальную – e6(t) = 70000 sin (900t) В. <br />Остальные исходные данные сохраняют свои значения. <br />В задании требуется рассчитать закон изменения напряжения uL2(t) после замыкания ключа Кл.<br /><b>Задание 4</b>(см. подробное описание)
Поисковые тэги: Операторный метод, Классический метод, Интеграл Дюамеля

Артикул №1060193
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 14.09.2017)
Дано: f = 50Гц
Найти закон изменения тока i3 и напряжения на конденсаторе uC
Построить графики

Дано: f = 50Гц<br />Найти закон изменения тока i<sub>3</sub> и напряжения на конденсаторе u<sub>C</sub><br /> Построить графики
Поисковые тэги: Операторный метод

Артикул №1055355
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  первого рода

(Добавлено: 24.07.2017)
Билет 14 (КПП) Задание 3
Дано: u(t) = 100√2sin(ωt+Ψ) В, uL(0+) = 100 В
Чему равна начальная фаза Ψ?

Билет 14 (КПП) Задание 3<br /> Дано: u(t)  = 100√2sin(ωt+Ψ) В, uL(0+) = 100 В<br /> Чему равна начальная фаза Ψ?


Артикул №1054922
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  второго рода

(Добавлено: 13.07.2017)
Анализ переходных процессов в цепях с сосредоточенными параметрами
Источник синусоидального напряжения e=E√2·sin(ωt+Ψ) действующее значение которого задано, имеет частоту ω = 314 с –1.
Вариант 11

Анализ переходных процессов в цепях с сосредоточенными параметрами<br />Источник синусоидального напряжения e=E√2·sin(ωt+Ψ) действующее значение которого задано, имеет частоту ω = 314 с <sup>–1</sup>. <br /> Вариант 11
Поисковые тэги: Операторный метод, Классический метод

Артикул №1054854
Технические дисциплины >
  Теоретические основы электротехники (ТОЭ) >
  Переходные процессы >
  переменный ток >
  второго рода

(Добавлено: 12.07.2017)
1. Рассчитать классическим методом ток i1(t) на трех этапах, соответствующих последовательному замыканию (или размыканию) трех ключей.
2. Рассчитать тот же ток i1(t) операторным методом. Для первой и второй коммутации воспользоваться операторным методом для полных составляющих тока, для третьей коммутации применить операторный метод для свободной составляющей тока.
3. Построить график зависимости i(t) для трех этапов.
Вариант 10

1. Рассчитать классическим методом ток i1(t) на трех этапах, соответствующих последовательному замыканию (или размыканию) трех ключей. <br />2. Рассчитать тот же ток i1(t) операторным методом. Для первой и второй коммутации воспользоваться операторным методом для полных составляющих тока, для третьей коммутации применить операторный метод для свободной составляющей тока. <br />3. Построить график зависимости i(t) для трех этапов. <br /> Вариант 10
Поисковые тэги: Операторный метод, Классический метод

    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях: