Артикул №1068271
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 12.11.2017)
Стержень ОА вращается вокруг точки О с угловой скоростью ω=2 1/c . На стержень надето колечко М, которое может скользить по неподвижной проволочной окружности радиусом R=12см.
Найти абсолютную скорость колечка М и его скорость относительно стержня в момент, определяемый углом φ.
Дано: ω=2 1/с R=12 см, φ=60°
Найти: Va, Vr

Стержень ОА вращается вокруг точки О с угловой скоростью ω=2 1/c . На стержень надето колечко М, которое может скользить по неподвижной проволочной окружности радиусом R=12см. 	<br />Найти абсолютную скорость колечка М и его скорость относительно стержня в момент, определяемый углом  φ.	<br /> Дано: ω=2 1/с R=12 см, φ=60°	<br />Найти:  V<sub>a</sub>, V<sub>r</sub>


Артикул №1068230
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 13.11.2017)
Стержень ОА вращается вокруг точки О с угловой скоростью ω=f1(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f2(t). Найти абсолютное ускорение точки М в момент времени t=2c. Дано: ω = 6-t2 S=12t2 - 36t + 36 Найти: a
Стержень ОА вращается вокруг точки О с угловой скоростью ω=f<sub>1</sub>(t) . Вдоль стержня движется точка М, положение которой определяется заданным расстоянием S=f<sub>2</sub>(t). Найти абсолютное ускорение точки М в момент времени t=2c. Дано: ω = 6-t<sup>2</sup> S=12t<sup>2</sup> - 36t + 36 Найти: a


Артикул №1068229
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 13.11.2017)
В вагоне, движущимся по прямолинейному участку пути рельсу с ускорением а, подвешен стержень ОА, который совершает колебательное движение по закону φ=f(t) в вертикальной плоскости вокруг оси О, перпендикулярной к направлению движения вагона.
Определить для указанного момента времени t абсолютное ускорение точки А стержня.
Дано: φ = π/4 sin 1/2 t, t=π(c), OA=32 √2(см), а = 2π(см/с2) Найти: аА

В вагоне, движущимся по прямолинейному участку пути рельсу с ускорением а, подвешен стержень ОА, который совершает колебательное движение по закону φ=f(t)  в вертикальной плоскости вокруг оси О, перпендикулярной к направлению движения вагона. 	<br />Определить для указанного момента времени t абсолютное ускорение точки А стержня. 	<br />Дано: φ = π/4 sin 1/2 t, t=π(c), OA=32 √2(см), а = 2π(см/с<sup>2</sup>) Найти:  а<sub>А</sub>


Артикул №1068227
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 13.11.2017)
Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/с . На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R= 20 см, ω= 3 1/с h=30см
Найти: Vа, Vr

Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 <sup>1</sup>/<sub>с </sub>. На окружность надето колечко М, которое может скользить по неподвижному стержню АВ. <br />Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.<br />Дано: R= 20 см, ω= 3 <sup>1</sup>/<sub>с</sub> h=30см<br />Найти: V<sub>а</sub>, V<sub>r</sub>


Артикул №1067639
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.11.2017)
На неподвижную проволочную окружность радиуса 20 см надето колечко М (рис.); через него проходит стержень ОА, который вращается вокруг оси О против часовой стрелки с угловой скоростью w = 1 1/с. Найти относительную, переносную и абсолютную скорости колечка М в момент, когда угол ОСМ равен 90°.
На неподвижную проволочную окружность радиуса 20 см надето колечко М (рис.); через него проходит стержень ОА, который вращается вокруг оси О против часовой стрелки с угловой скоростью w = 1 1/с. Найти относительную, переносную и абсолютную скорости колечка М в момент, когда угол ОСМ равен 90°.


Артикул №1067638
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.11.2017)
По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.
По трубке, изогнутой в форме окружности радиуса R = 20 см (рис), течет жидкость с постоянной относительно трубки скоростью 40 см/с. Трубка вращается вокруг оси О с постоянной угловой скоростью ω = 1 1/с. Найти абсолютную скорость частицы жидкости, когда она занимает в трубке положение, определяемое углом ОСМ, равным 120° . Направления вращения трубки и течения жидкости (по трубке) – против хода стрелки часов.


Артикул №1067637
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.11.2017)
Вдоль цеха по рельсам с постоянной скоростью 0,1 м/с перемещается мостовой кран АВ, по которому с постоянной скоростью 0,2 м/с движется тележка М. Определить абсолютную скорость тележки.
Вдоль цеха по рельсам с постоянной скоростью 0,1 м/с перемещается мостовой кран АВ, по которому с постоянной скоростью 0,2 м/с движется тележка М. Определить абсолютную скорость тележки.


Артикул №1067612
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.11.2017)
Проволочная окружность радиусом R=20см вращается в своей плоскости вокруг точки О с угловой скоростью ω=3 1/c.
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано:R=20см, ω= 3 1/с, h = 10 см
Найти: Va, VT

Проволочная окружность радиусом R=20см  вращается в своей плоскости вокруг точки О с угловой скоростью  ω=3 <sup>1</sup>/<sub>c</sub>. 	<br />На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.	<br /> Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении. 	<br />Дано:R=20см, ω= 3 <sup>1</sup>/<sub>с</sub>, h = 10 см<br />Найти: V<sub>a</sub>, V<sub>T</sub>


Артикул №1067593
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.11.2017)
Проволочная окружность радиусом R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 1/с .
На окружность надето колечко М, которое может скользить по неподвижному стержню АВ.
Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении.
Дано: R = 20 см, ω = 3 1/с, h = 10 см
Найти: Va, VT

Проволочная окружность радиусом  R=20 см вращается в своей плоскости вокруг точки О с угловой скоростью ω = 3 <sup>1</sup>/<sub>с </sub>. 	<br />На окружность надето колечко М, которое может скользить по неподвижному стержню АВ. 	<br />Найти абсолютную скорость колечка М и его скорость относительно окружности в заданном положении. 	<br />Дано: R = 20 см, ω = 3 <sup>1</sup>/<sub>с</sub>, h = 10 см <br /> Найти: V<sub>a</sub>, V<sub>T</sub>


Артикул №1067471
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 08.11.2017)
Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t2 (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = AB = π · R · cos πt/3 (м), t - сек (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t1 = 2 c.
Тело произвольной формы вращается вокруг оси, проходящей через точку О перпендикулярно плоскости пластины с угловой скоростью ω = 2t −1,5t<sup>2</sup> (рад) (положительное направление отсчёта ω показано на рис. П.30). По дуге окружности радиуса R = 0,5 м движется точка В по закону S = <sup>∪</sup> AB = π · R · cos πt/3 (м), t - сек  (положительные отсчёты от А к В). Определить абсолютную скорость и абсолютное ускорение точки в момент времени t<sub>1</sub> = 2 c.


Артикул №1067470
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 08.11.2017)
Треугольная пластина ADE вращается вокруг оси Z с угловой скоростью ω = 0,3t2 − 2,2 рад/с (положительное направление ω показано на рисунке дуговой стрелкой). По гипотенузе AD движется точка В по закону S = АВ = 2 +15t − 3t2 см (положительное направление отсчёта S от А к D). Определить абсолютную скорость Vабс и абсолютное ускорение aабс точки B в момент времени t1 = 2 c.
Треугольная пластина ADE вращается вокруг оси Z с угловой скоростью ω = 0,3t<sup>2</sup> − 2,2 рад/с (положительное направление ω показано на рисунке дуговой стрелкой). По гипотенузе AD движется точка В по закону S = АВ = 2 +15t − 3t<sup>2</sup> см (положительное направление отсчёта S от А к D). Определить абсолютную скорость  V<sub>абс</sub> и абсолютное ускорение  a<sub>абс</sub> точки B в момент времени t<sub>1</sub> = 2 c.


Артикул №1067428
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 07.11.2017)
Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону φ = 4(t2 - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At2 - 2t3)/3 см.
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.

Круглая пластина радиусом R = 60 см вращается вокруг неподвижной оси, перпендикулярной плоскости пластины и проходящей через точку О, лежащую на ее ободе, по закону  φ = 4(t<sup>2</sup> - t) рад (рис. 6.4). По ободу пластины движется точка М, положение которой определяется координатой S - АМ - πR(At<sup>2</sup> - 2t<sup>3</sup>)/3  см. <br />	Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t = 1 с.


Артикул №1055550
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 24.07.2017)
Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t2 - t3 . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t3 - 4t2) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
Круглая пластинка (рис. К4.2) радиуса R = 60 см, вращается вокруг неподвижной оси, проходящей через точку О, по законуφ= 2t<sup>2</sup> - t<sup>3</sup> . По пластинке по окружности движется точка М по закону s = AM = ((πR)/2)(2t<sup>3</sup> - 4t<sup>2</sup>) = см (t – в секундах). На рис. К4.2 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t<sub>1</sub> = 1 с.


Артикул №1055549
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 24.07.2017)
Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t3 - 2t2 . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t2 - t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.
Прямоугольная пластинка (рис. К4.1) вращается вокруг неподвижной оси z по закону φ = t<sup>3</sup> - 2t<sup>2</sup> . По пластинке вдоль прямой ВD, образующей с вертикалью угол α = 30°, движется точка М по закону s = AM = 30(t<sup>2 </sup>- t)+ 20 см (t – в секундах). На рис. К4.1 точка М показана в положении, при котором S = AM > 0 (при S < 0 точка М находится по другую сторону от точки А). Найти абсолютную скорость и абсолютное ускорение точки М в момент времени t<sub>1</sub> = 1 с.


Артикул №1054775
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 11.07.2017)
Задача К4. Вариант 63
Дано:
φ = t2-2t3
b = 16 см
S = AM = 60(t4-3t2)+56
t1 = 1c
Найти: Vab, aab

Задача К4. Вариант 63<br />Дано: <br />φ = t<sup>2</sup>-2t<sup>3</sup><br /> b = 16 см<br /> S = AM = 60(t<sup>4</sup>-3t<sup>2</sup>)+56<br /> t1 = 1c<br /> Найти: V<sub>ab</sub>, a<sub>ab</sub>


Артикул №1045517
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 20.03.2017)
Дано:
Точка М движется относительно пластины по окружности. Уравнение относительного движения т. М:
s(t) = 4π(sin(2πt))2 = cм
Уравнение движения пластины:
ωe(t) = 3t − 2 (1/с)
R = 9 cм
t1 = 1/3 сек
Определить: Для заданного момента времени определить абсолютную скорость и абсолютное ускорение т.М.

Дано: <br /> Точка М движется относительно пластины по окружности. Уравнение относительного движения т. М: <br /> s(t) = 4π(sin(2πt))<sup>2</sup> = cм  <br /> Уравнение движения пластины: <br /> ω<sub>e</sub>(t) = 3t − 2 (1/с) <br /> R = 9 cм <br /> t<sub>1</sub> = 1/3 сек <br /> Определить: Для заданного момента времени определить абсолютную скорость и абсолютное ускорение т.М.


Артикул №1043125
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 22.02.2017)
Прямоугольная пластина или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО1 лежит в плоскости пластины (пластина вращается в пространстве).
По пластине вдоль прямой BD ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины (схемы 7 – 10), движется точка М. Закон ее относительного движения, выражаемый уравнением S = AM = f(t) (s – в сантиметрах, t - в секундах), задан в табл. 1.4 отдельно для схем 1 – 6 и для схем 7 - 10, при этом на схемах 7 - 10 и отсчитывается по дуге окружности; там же даны размеры b и l . На всех схемах точка М показана в положении, при котором s = AM > 0 (при s < 0 точка М находится по другую сторону от точки А).
Определить абсолютную скорость и абсолютное ускорение точки М в момент времени t1 = 1 с.

Прямоугольная  пластина  или круглая пластина радиусом R = 60 см (рис.1.4) вращается вокруг неподвижной оси с постоянной угловой скоростью, заданной в табл. 1.4 (при знаке минус направление  противоположно показанному на рисунке). Ось вращения на схемах 1 - 4 и 9, 10 перпендикулярна плоскости пластины и проходит через точку  О (пластина вращается в своей плоскости); на схемах 5 – 8 ось вращения ОО<sub>1</sub> лежит в плоскости пластины (пластина вращается в пространстве). <br /> По пластине вдоль прямой BD  ( схемы 1 – 6) или по окружности радиуса R, т.е. по ободу пластины  (схемы 7 – 10), движется  точка  М.  Закон ее относительного движения, выражаемый  уравнением  S = AM = f(t)  (s –  в   сантиметрах, t -   в секундах), задан  в табл. 1.4 отдельно для   схем   1 – 6  и для схем   7  - 10,  при  этом  на  схемах  7  - 10  и отсчитывается по дуге окружности;  там же даны размеры  b  и  l .  На всех  схемах  точка  М  показана в положении, при котором s = AM > 0  (при  s < 0 точка М  находится по другую сторону от точки  А). <br /> Определить абсолютную скорость и абсолютное ускорение  точки М в момент времени t<sub>1</sub> = 1 с.


Артикул №1041965
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 09.02.2017)
Определить скорость и ускорение точки М
Определить скорость и ускорение точки М


Артикул №1039841
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 10.01.2017)
Кольцо радиуса R = 15 см жестко соединено стержнем ДО с валом О, ось вращения которого перпендикулярна плоскости рисунка. Вал О вращается по закону φ = 3t2-4t. Из точки А по кольцу движется точка М так, что расстояние АМ изменяется по закону
s = AM = 20√3·π·sin(πt/3) см.
Определить абсолютное ускорение точки М в момент времени t1 = 4/3 с, если в этот момент кольцо расположено так, как указано на рисунке. Принять l = 20 см.

Кольцо радиуса R = 15  см жестко соединено стержнем ДО с валом О, ось вращения которого перпендикулярна плоскости рисунка. Вал О вращается по закону φ = 3t<sup>2</sup>-4t. Из точки А по кольцу движется точка М так, что расстояние АМ изменяется по закону<br /> s = AM = 20√3·π·sin(πt/3) см.<br /> Определить абсолютное ускорение точки М в момент времени t1 = 4/3 с, если в этот момент кольцо расположено так, как указано на рисунке. Принять l = 20 см.


Артикул №1037143
Технические дисциплины >
  Теоретическая механика (теормех, термех) >
  Кинематика >
  Сложное движение точки

(Добавлено: 04.12.2016)
Задача К4
Определить скорости и ускорения точки А

Задача К4<br /> Определить скорости и ускорения точки А


    Категории
    Заказ решения задач по ТОЭ и ОТЦ
    Заказ решения задач по Теоретической механике
    Популярные теги в выбранной категории:
    Не нашли нужной задачи или варианта? Вы всегда можете воспользоваться быстрым заказом решения.

    Быстрый заказ решения

    Студенческая база

    Наш сайт представляет из себя огромную базу выполненных заданий по разым учебным темам - от широкораспространенных до экзотических. Мы стараемся сделать так, чтобы большиство учеников и студентов смогли найти у нас ответы и подсказки на интересующие их темы. Каждый день мы закачиваем несколько десятков, а иногда и сотни новых файлов, а общее количество решений в нашей базе превышает 150000 работ (далеко не все из них еще размещены на сайте, но мы ежедневно над этим работаем). И не забывайте, что в любой большой базе данных умение правильно искать информацию - залог успеха, поэтому обязательно прочитайте раздел «Как искать», что сильно повысит Ваши шансы при поиске нужного решения.

    Мы в социальных сетях: